
Development of a high-temperature PID controller with 0.25K precision
T. Foldy-Porto1
1Department of Physics, Yale University

(Dated: 2 May 2019)

We describe the design and development of a PID temperature controller with 0.25◦C precision for an oven
operating between 300◦C and 600◦C. We present the considerations that went into the mechanical, electrical,
and software design for the controller, as well as the results we obtained and points of future improvement.

I. INTRODUCTION

Generating an atomic beam of constant flux is a prob-
lem of principal interest to anyone trying to produce
a Bose-Einstein condensate (BEC). This is relevant to
the Ultra-cold Quantum Matter Lab at Yale University
which studies the quantum many-body problem through
ultra-cold quantum matter that is prototypical of larger,
more complex systems. In order to create the ultra-cold
BEC, it is necessary to cool atoms (6Li, in our case) down
to temperatures on the scale of 10−9K. To achieve this,
the lithium atoms are first heated in an oven until they
enter a gaseous state. They then exit the oven through a
small aperture, creating an atomic beam (shown in figure
1), and enter a magneto-optical trap that cools the atoms
down to the desired temperature. This trap consists of
a laser—which is tuned on resonance with the lithium
atoms such that it excites the emission of photons, thus
slowing the atoms down by conservation of momentum—
and a Zeeman slower, which exploits the Zeeman effect
to counteract the changing Doppler shift (and changing
resonant frequency) experienced by the atoms as they
slow down throughout the trap.

The efficacy of the magneto-optical trap depends on
the stability of the atomic beam, which in turn depends
on the oven maintaining a constant flux of atoms through
its aperture. The atomic flux Φ, defined as the number of
atoms per unit time passing through the aperture, obeys
the relationship

Φ =
1

4
nAv̄ (1)

where n is the density of the gas in the oven, A is the
area of the aperture, and v̄ is the average velocity of the
atoms exiting the oven. In our case, the vapor density n
is given by the vapor pressure of the lithium gas at the
temperature of the oven. This quantity is given by the
vapor pressure equation:

n = P (T) = n0e
− L

RT (2)

where n0 is a constant, L is the latent heat of the
lithium gas, and R is the universal gas constant. Combin-
ing equations 1 and 2, we see the dependency of atomic
flux Φ on temperature T r:

Φ =
1

4
n0Av̄e

−L/RT (3)

FIG. 1. The oven implemented in the Lithium Lab. The
lithium atoms are placed in an insulated metal chamber that
is adjacent to a heating tape connected to an AC voltage
source. The heat flux into the oven is proportional to the
electrical power through the heating tape.

Therefore, variations in T have an exponential effect on
the flux of the atomic beam (shown in figure 2), meaning
that the performance of the magneto-optical trap is very
sensitive to variations in the temperature of the oven.
This necessitates the creation of a device to precisely sta-
bilize the temperature of the oven.

II. MECHANICAL DESIGN

A. The existing oven

The mechanical design of the temperature controller
was constrained by the existing lithium oven. Luckily,
this oven was quite simple and did not impose many con-
straints. Shown in figure 1, the oven consists of a metal
enclosure, insulated with aluminum foil, and a heating
tape (STH101-020) that is connected to an AC voltage
source. The heat Q applied to the lithium atoms is
proportional to the electrical power through the heating
tape:

Q ∝ V 2
rms

R
(4)

where R is the resistance of the heating tape (24±0.5Ω
in our experiment).

2

FIG. 2. The flux of our atomic beam as a function of temper-
ature. The units of the flux are arbitrary, but this plot serves
as a qualitative indicator of the exponential relationship be-
tween Φ and T . In the region where we’re operating the oven
(around 500◦), we see that a small change in temperature
results in a large change in flux.

B. Control methods

Given equation 4, to control the temperature of the
oven it is necessary to control the voltage across the
heating tape. Initially, this was achieved by a variable
transformer (or variac), but that proved difficult to au-
tomate because the dial that adjusted the voltage was
large and unwieldy. Motorized variacs do exist, but they
are undesirable for two reasons: they are expensive, and
they are often driven by DC motors, meaning controlling
the dial position accurately requires the implementation
of a sophisticated motor controller and encoder feedback
system.

To simplify this process, we switched out the variac for
a TRIAC (triode for alternating current) dimmer switch;
these devices are commonly used in houses to dim light
bulbs, and they provide an easy way to produce a vari-
able AC voltage source. We selected the Lutron Rotary
Dimmer Switch for Incandescent Bulbs1 Essentially, the
dimmer switch takes a sine-wave and chops it up depend-
ing on some threshold voltage set by the user. Internally,
there is a TRIAC that conducts only when the voltage
on its gate is higher than the threshold. Every time the
input wave crosses zero, the TRIAC shuts off. A capac-
itor connected to the input acts as an integrator for the
sine wave, and when the voltage across this capacitor
crosses the threshold, the TRIAC turns on and conducts
again. Thus, by varying the threshold voltage (via a po-
tentiometer, for example) the user can set the phase at
which the output starts to “see” the sine wave on the
input.

C. Our design

The rotary switch configuration allowed the user to
set the threshold voltage by turning a lightweight poten-
tiometer. By coupling a small servo motor to the rotary
switch, we had means to precisely automate the thresh-
old voltage, and thus the Vrms that was output to the
heating tape. The single-wire, position-controlled nature
of the servo motor made it preferable to a DC or stepper
motor.

The built-in mounting holes on the the rotary dimmer
switch housing made the mounting of the servo motor
straightforward. We constructed a wooden mount to con-
nect the servo motor to the switch: one end of the mount
was screwed into the mounting holes on the switch with
#8-3/4” wood screws; the other end was screwed into
the servo motor with #6-1/2” wood screws. The servo
motor came with several mounting hubs, making it easy
to couple the output shaft of the servo to the plastic hub
on the rotary switch using small wood screws. To make
the control code simpler, the 0◦ position of the servo was
aligned with the “off” position of the switch. This design
proved to be fairly strong, as it was able to withstand a
few accidental drops.

III. ELECTRICAL DESIGN

With the question of how to physically adjust the tem-
perature of the oven solved, we were able to move on to
the design of the closed-loop control system that would
stabilize that temperature. A block diagram schematic
of our controller is shown in figure 3. Essentially, the
temperature of the oven is measured by a J-type ther-
mocouple, the output of which is passed through an am-
plifier/filter circuit before being fed into an Arduino mi-
crocontroller. Depending on what the user desires, the
Arduino runs one of a variety of temperature-control pro-
grams. The primary program it runs is a PID loop that
compares the temperature of the oven to a user-defined
temperature set-point. The Arduino then adjusts the
position of the rotary switch (via the servo motor, as de-
scribed in section II.C.), which in turn heats or cools the
oven.

The design of the electrical system was further influ-
enced by the temperature constraints of the oven: it
would be catastrophic for the experiment if the temper-
ature dropped below 300◦C or rose above 600◦C. Be-
low that range, two things happen: the dynamics of the
lithium atoms becomes complex due to capillary action
caused by the temperature gradient; and the lithium so-
lidifies and clogs the oven, forcing us spend time and
resources taking apart and cleaning the experimental ap-
paratus. Above that range, the vacuum seals on the ex-
periment break, again requiring dismantling and labor-
intensive repair. This prompted the design of a fail-safe
circuit that provided a hardware-level protection against
the failure of the PID controller. The design of this cir-

3

FIG. 3. High-level block diagram of our temperature controller. A microcontroller sets the position of a servo motor that
is mechanically attached to a TRIAC rotary dimmer switch. This switch takes 120 VAC and outputs an AC waveform with
variable power (dependent on the position of the switch), which then determines the temperature of the heating tape. The
temperature of the lithium oven is sensed by a thermocouple, and this signal is fed back to the microcontroller to close the
loop.

cuit and the thermocouple amplifier was non-trivial and
warrants more detailed explanation.

A. Thermocouple amplifier circuit

This circuit was motivated by the small amplitude
of the thermocouple output voltage due to the relative
weakness of the thermoelectric effect. We chose a J-type
thermocouple because it provided the best accuracy in
the operating range of our oven. However, the Seebeck
coefficient of J-type thermocouples is only 50 µ V/◦C. To
put this in perspective, consider that the Arduino micro-
controller we used to interpret this voltage had a 10-bit
ADC with a reference voltage of 5V. This gives a resolu-
tion of 4.9 mV per bit, or 98◦C per bit. We remedied this
poor resolution using two methods: an amplifier/filter
circuit to both boost and clean up the output of the ther-
mocouple, and a software technique called oversampling
and decimation.

The circuit we designed to amplify the thermocouple
voltage, shown in figure 8 in the appendix, was based on
the instrumental amplifier, a type of differential amplifier
that has a high common-mode rejection ratio (CMRR).
Because the voltage produced by the thermocouple was
so small, common-mode DC noise generated by inductive
effects tended to dominate the signal; the high CMRR
characteristic of the instrumental amplifier allowed our
circuit to remove this DC bias, whereas a normal differ-
ential amplifier would have boosted it. The theoretical
differential gain of the circuit is given by:

Ad =

(
75.1k

75.1k + 75.1k

)(
1 + 2

1M

47k

)(
10k

4.7k

)
= 185.27

(5)
The values in the equation above come from the resis-

tor values in the amplifier circuit itself, shown in figure 8.
With the amplifier circuit in place, the resolution of the
thermocouple was increased to 0.529◦C per bit. To attain
the sub-0.25◦C precision we were aiming for, however, it
was necessary to employ oversampling and decimation to
increase the resolution of the ADC on the Arduino. Es-
sentially, this technique trades frequency resolution for
voltage resolution; by sampling at a frequency higher
than the Nyquist frequency and then averaging the re-
sult, we are able to obtain greater resolution on the ana-
log signal. For every bit of additional resolution n, it is
necessary to sample 4 times the Nyquist frequency:23

sample frequency = (2n)2 (6)

The temperature of the oven does not vary rapidly
with time and we do not care about resolution in the fre-
quency domain. Our implementation of this technique is
shown in figure 4. For a more detailed explanation of the
method, see the appendix of reference 3. Together, the
amplifier circuit and oversampling software allowed us to
measure the voltage of the thermocouple with millivolt
precision.

B. Fail-safe circuit

Due to the nature of the lithium atoms in our oven,
it would be catastrophic if the temperature of the oven

4

FIG. 4. Our implementation of the oversampling and dec-
imation technique. For reference: words in blue establish
data types; words in orange are built-in functions; and words
in green are control structures (if, for, while loops, etc.).

dropped below 600◦C or rose above 600◦C. We imple-
mented software stops to prevent this from occurring, but
to be safe we developed an isolated fail-safe circuit that
switches the input of the heating tape to a safe “baseline”
AC source in the event of the PID controller driving the
voltage too high or low. This baseline source is calibrated
to heat the heating tape to a temperature inside the safe
range.

In essence, the circuit requires three forms of authenti-
cation before it enables the PID controller. The primary
element of the fail-safe circuit (shown in figure 9) is a
double-pole double-throw (DPDT) relay that switches
the input of the heating tape between a constant AC
source, set by a variac, and the PID-controlled AC source.
The coil voltage of the relay is 12V DC, so it was nec-
essary to use an N-MOSFET to drive the relay from 5V
logic. The default (no power) position of the MOSFET
connects the heating tape to the baseline source. The
gate of the MOSFET is connected to the output of an
AND IC (SN74AC08).

This line is driven high if and only if: 1) the ther-
mocouple signal is above the low threshold; 2) the ther-
mocouple signal is below the high threshold; and 3) the
Arduino asserts its presence by driving an input high
(the input is connected to a pull-down resistor). In the
event that the Arduino fails, its connection to the fail-
safe goes to ground, the output of the AND gate goes
low, and the relay returns to the default mode that con-
nects the baseline source to the heating tape. The same
chain of events happens if the output of the thermocou-
ple rises above or below certain thresholds, which are
set by the user and correspond to low-temperature and
high-temperature limits.

IV. PROGRAMMING THE CONTROLLER

Having completed the mechanical and electrical assem-
bly of the controller, the final step was to implement
control software. Among the many available types of

FIG. 5. The temperature response of the plant (1” aluminum
tube, in our case) to a step input. The response was measured
at two points: on the surface of the tube, shown in green,
and in the interior of the tube, shown in blue. Note that
although the surface response is colored green, it is in units
of temperature and measured according to the blue axes. As
one would expect, the interior was slower to respond than the
surface.

controller we could have designed (bang-bang, internal
model, etc.), a straightforward PID controller seemed a
sufficient starting point. In fact, in the final algorithm
we set the derivative gain to zero, so we really produced
a PI controller.

Initially, there were two factors that presented serious
difficulties in stabilizing the control loop: 1) there was
a significant time delay in the temperature response of
the system, and 2) the response of the system looked
different depending on whether we were driving it hotter
or colder. The time delay can be seen in both figure 5
and figure 11 (in the appendix).

To tune the PID loop, we first recorded the response
of the system to a variety of inputs. From the results
of these tests (which can be seen in figures 12 in the
appendix), we recovered the impulse response of the sys-
tem and were able to deduce the transfer function. This
allowed us to simulate the plant response to a PID con-
troller with variable gains, thus tuning the controller to
the optimal settings. However, as soon as the system was
disturbed slightly—someone bumped into it, the heat-
ing tape shifted slightly, the room temperature changed,
etc.—the impulse response changed. Because of this, we
decided that it would not be practical to use this tuning
method moving forward.

In our search for a way to tune the parameters of the
PID controller without measuring the system response,
we settled on the Ziegler-Nichols method, a heuristic tun-
ing method developed by John Ziegler and Nathaniel
Nichols in 19424. The technique consists of first setting
the integral gain Ki and the derivative gain Kd to zero,
and then adjusting the proportional gain Kp (increas-
ing it from zero) until the system enters steady oscilla-
tions. This value of Kp is called the “ultimate gain” Ku

and the period of these oscillations is labeled Tu. For a
PI controller, these two quantities are used to determine

5

FIG. 6. The temperature of the system (◦C) plotted against time (seconds) for three setpoints: 100◦C, 200◦C, and 300◦C. The
size of the temperature bins was 0.1◦C, and data points were recorded every 5 seconds. A closeup of the inset histograms are
shown in figure 10.

the optimal parameter values according to the following
rules:

Kp = .45Ku (7)

Ki = .54
Ku

Tu
(8)

Using this method, we were able to create a control
loop that stabilized the temperature of the oven to 0.25◦C
at a setpoint of 300◦C. The results of several trials, each
with a different setpoint, are shown in figures 6 and 10.

V. POINTS OF IMPROVEMENT

The thermocouple amplifier circuit could be made bet-
ter by moving it from a breadboard to a printed cir-
cuit board (PCB). Breadboards are known to have high
amounts of parasitic capacitance, and although there
were no such effects that were noticeable when measur-
ing the thermocouple voltage to millivolt precision, these
effects could show up if the gain of the amplifier is in-
creased. If precision beyond 0.001V is required, it will
be necessary to increase the gain. A PCB would be ideal
in two ways: it would not exhibit nearly as much para-
sitic capacitance as breadboards; and it would make the
circuit more mechanically secure (wires less likely to be
pulled loose, etc.).

While our fail-safe circuit is fairly robust, there are
several ways in which it could be improved. We did
not account for the case in which the thermocouple it-
self gives an erroneous measurement of the temperature.
This problem could be rectified by the implementation of
redundant thermocouples that are electrically isolated. It
is unlikely that all thermocouples fail at once, and a well-
designed control algorithm would be able to differentiate
good thermocouple readings from erroneous ones. Ad-
ditionally, our fail-safe mechanism does not protect the
system against total power failure. In the event that

the power to the lab fails (e.g., due to a storm), both
the baseline source and the PID source will stop work-
ing, and the temperature of the oven will cool to room
temperature. Unfortunately, there is no easy solution for
this problem aside from supplying the lab with a backup
generator. For the most part, however, insuring against
total power failure is a problem beyond the scope of the
device presented in this paper.

VI. CONCLUSION

The device described by this document succeeded in
several ways: it stabilized the temperature of the lithium
oven to a high degree of precision (0.2◦C), it was cheap to
build, and it offered the user a high level of functionality
and customizability. To answer the question of whether
this was a worthwhile project, it is helpful to compare our
device to those that are commercially available. There
are many PID temperature controllers available to buy;
a typical example of a high-quality one is the Omega
CN32PT, which retails for $225 to $495 (depending on
features included) and boasts a precision of 0.4◦C. Not
only is the precision achieved by our device better than
that of the Omega device, but the open-source availabil-
ity of our controller makes it significantly more versatile
and robust.

Since the microcontroller in the temperature controller
we built is easily programmable, our device offers users
the ability to customize temperature profiles, remotely
record data, interface with other autonomous controllers
on the experiment, and program any other functionality
that users wish for. Additionally, the user interface we
designed is significantly more intuitive and easy-to-use
than that of the Omega controller. This cosmetic feature
may seem insignificant, but it will reduce potential user-
errors in the future that could impact the experiment.

6

VII. REFERENCES

1Available on Amazon for $6.54.
2“Enhancing adc resolution by oversampling,” Tech. Rep. (Atmel
Corp., 2005).

3“Improving adc resolution by oversampling and averaging,” Tech.
Rep. (Silicon Labs, 2013).

4J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic
controllers,” trans. ASME 64 (1942).

VIII. APPENDIX

7

FIG. 7. Above: Photograph of the device in place on the lab bench with key components outlined. Below: The logical
diagram that corresponds to the above image; boxes are color coordinated with the components outlined above.

8

FIG. 8. Above: Schematic for the thermocouple amplifier circuit we built for our temperature controller. Below: The logical
diagram that corresponds to the above schematic. Boxes are color coordinated with the components in the schematic. The
circuit is a modified version of an instrumental amplifier, with a gain of 185.27 (see equation 5). Note that the negative lead
of the thermocouple must be tied to ground for the amplifier to work properly.

9

FIG. 9. Above: Schematic for the low-temperature fail-safe circuit. Below: The logical diagram that corresponds to the
above schematic. Boxes are color coordinated with the components in the schematic. For simulation purposes, a switch is
shown on the “Arduino +5V” line to represent the ability of the Arduino to drive that line high or low. Additionally, the
thermocouple on the non-inverting input of the op-amp has been set to 2.8V, whereas in reality that input is drawn straight
from the output of the thermocouple amplifier.

10

FIG. 10. A histogram of the temperature of the system (◦C) taken over 4̃5 minutes for three setpoints: 100◦C, 200◦C, and
300◦C.

FIG. 11. The system response to various, water-based disturbances. For all but one test, we heated the oven to a constant
(but non-PID-stabilized) temperature, poured an amount of water on the heating tape (the size of the amount indicated in
the title of the plots), and recorded the response of the system. For the plot shown in green, we blew air through the oven
instead of pouring water on it. In the lower-right plot, we show all the trials on the same axes, to give some perspective as to
the magnitude and time-scale of the response.

11

FIG. 12. The system response (blue) to various inputs (red). These tests were mostly exploratory in the sense that we were
simply curious about what would happen if X were our input, hence the unusual shapes of some of the input waveforms. Note
that before t = 0, the value of each input was zero.

